Аннотация к рабочей программе по химии

Скачать материалы:

Аннотация к рабочей программе по химии на 2019-2020 учебный год

Содержание учебного предмета

8 КЛАСС

Тема 1. Введение в химию (6 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых и сложных вещества

Превращения веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия в ХVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки - работы М. В. Ломоносова, А. М. Бутлерова, Д.И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Расчётные задачи. 1. Нахождение относительной молекулярной массы вещества по его химической формуле. 2. Вычисление массовой доли химического элемента в веществе по его формуле.

Практическаяработа № 1

Правила техники безопасности при работе в химическом кабинете. Лабораторное оборудование и обращение с ним.

Практическаяработа № 2

Наблюдение за горящей свечой.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике веществ понятия: «атом», «молекула», «химический элемент», «химический знак, или символ», «вещество», «простое вещество», «сложное вещество», «свойства веществ», «химические явления», «физические явления», «коэффициенты», «индексы», «относительная атомная масса», «относительная молекулярная масса», «массовая доля элемента»;

знать: предметы изучения естественнонаучных дисциплин, в том числе химии; химические символы, их названия и произношение;

классифицировать вещества по составу на простые и сложные;

различать: тела и вещества; химический элемент и простое вещество;

описывать: формы существования химических элементов (свободные атомы, простые вещества, сложные вещества); табличную форму Периодической системы химических элементов; положение элемента в таблице Д. И. Менделеева, используя понятия «период», «группа», «главная подгруппа», «побочная подгруппа»; свойства веществ (твердых, жидких, газообразных);

объяснять сущность химических явлений (с точки зрения атомно-молекулярного учения) и их принципиальное отличие от физических явлений;

характеризовать: основные методы изучения естественных дисциплин (наблюдение, эксперимент, моделирование); вещество по его химической формуле согласно плану: качественный состав, тип вещества (простое или сложное), количественный состав, относительная молекулярная масса, соотношение масс элементов в веществе, массовые доли элементов в веществе (для сложных веществ); роль химии (положительную и отрицательную) в жизни человека, аргументировать свое отношение к этой проблеме;

вычислять относительную молекулярную массу вещества и массовую долю химического элемента в соединениях;

проводить наблюдения свойств веществ и явлений, происходящих с веществами;

соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов.

Метапредметные результаты обучения

Учащийся должен уметь:

определять проблемы, т. е. устанавливать несоответствие между желаемым и действительным;

составлять сложный план текста;

владеть таким видом изложения текста, как повествование;

под руководством учителя проводить непосредственное наблюдение;

под руководством учителя оформлять отчет, включающий описание наблюдения, его результатов, выводов;

использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере знаков химических элементов, химических формул);

использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделирования атомов и молекул);

получать химическую информацию из различных источников;

определять объект и аспект анализа и синтеза;

определять компоненты объекта в соответствии с аспектом анализа и синтеза;

осуществлять качественное и количественное описание компонентов объекта;

определять отношения объекта с другими объектами;

определять существенные признаки объекта.

Тема 2. Атомы химических элементов (7 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строения атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома - образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов №1-20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента - образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой - образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь.

Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой - образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой - образование металлических кристаллов. Понятие о металлической связи.

Демонстрации. Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике атомов понятия: «протон», «нейтрон», «электрон», «химический элемент», «массовое число», «изотоп», «электронный слой», «энергетический уровень», «элементы-металлы», «элементы-неметаллы»; при характеристике веществ понятия «ионная связь», «ионы», «ковалентная неполярная связь», «ковалентная полярная связь», «электроотрицательность», «валентность», «металлическая связь»;

описывать состав и строение атомов элементов с порядковыми номерами 1—20 в Периодической системе химических элементов Д. И. Менделеева;

составлять схемы распределения электронов по электронным слоям в электронной оболочке атомов; схемы образования разных типов химической связи (ионной, ковалентной, металлической);

объяснять закономерности изменения свойств химических элементов (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства) в периодах и группах (главных подгруппах) Периодической системы химических элементов Д. И. Менделеева с точки зрения теории строения атома;

сравнивать свойства атомов химических элементов, находящихся в одном периоде или главной подгруппе Периодической системы химических элементов Д. И. Менделеева (зарядов ядер атомов, числа электронов на внешнем электронном слое, число заполняемых электронных слоев, радиус атома, электроотрицательность, металлические и неметаллические свойства);

давать характеристику химических элементов по их положению в Периодической системе химических элементов Д. И. Менделеева (химический знак, порядковый номер, период, группа, подгруппа, относительная атомная масса, строение атома — заряд ядра, число протонов и нейтронов в ядре, общее число электронов, распределение электронов по электронным слоям);

определять тип химической связи по формуле вещества;

приводить примеры веществ с разными типами химической связи;

характеризовать механизмы образования ковалентной связи (обменный), ионной связи, металлической связи;

устанавливать причинно-следственные связи: состав вещества — тип химической связи;

составлять формулы бинарных соединений по валентности;

находить валентность элементов по формуле бинарного соединения.

Метапредметные результаты обучения

Учащийся должен уметь:

формулировать гипотезу по решению проблем;

составлять план выполнения учебной задачи, решения проблем творческого и поискового характера, выполнения проекта совместно с учителем;

составлять тезисы текста;

владеть таким видом изложения текста, как описание;

использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере составления схем образования химической связи);

использовать такой вид материального (предметного) моделирования, как аналоговое моделирование;

использовать такой вид материального (предметного) моделирования, как физическое моделирование (на примере моделей строения атомов);

определять объекты сравнения и аспект сравнения объектов;

выполнять неполное однолинейное сравнение;

выполнять неполное комплексное сравнение;

выполнять полное однолинейное сравнение

Тема 3. Простые вещества (5ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества - металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества - неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ - аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества — миллимоль и киломоль, миллимолярная и киломолярная массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов»,«постоянная Авогадро».

Расчетные задачи. 1. Вычисление молярной массы веществ по химическим формулам. 2. Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Демонстрации. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике веществ понятия: «металлы», «пластичность», «теплопроводность», «электропроводность», «неметаллы», «аллотропия», «аллотропные видоизменения, или модификации»;

описывать положение элементов-металлов и элементов-неметаллов в Периодической системе химических элементов Д. И. Менделеева;

классифицировать простые вещества на металлы и неметаллы, элементы;

определять принадлежность неорганических веществ к одному из изученных классов — металлы и неметаллы;

доказывать относительность деления простых веществ на металлы и неметаллы;

характеризовать общие физические свойства металлов;

устанавливать причинно-следственные связи между строением атома и химической связью в простых веществах — металлах и неметаллах;

объяснять многообразие простых веществ таким фактором, как аллотропия;

описывать свойства веществ (на примерах простых веществ — металлов и неметаллов);

соблюдать правила техники безопасности при проведении наблюдений и лабораторных опытов;

использовать при решении расчетных задач понятия: «количество вещества», «моль», «постоянная Авогадро», «молярная масса», «молярный объем газов», «нормальные условия»;

проводить расчеты с использованием понятий: «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Метапредметные результаты обучения

Учащийся должен уметь:

составлять конспект текста;

самостоятельно использовать непосредственное наблюдение;

самостоятельно оформлять отчет, включающий описание наблюдения, его результатов, выводов;

выполнять полное комплексное сравнение;

выполнять сравнение по аналогии

Тема 4.Соединения химических элементов (16 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества.

Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия доля.

Расчётные задачи. 1. Расчет массовой и объемной долей компонентов смеси веществ.2. Вычисление массовой доли вещества в растворе по известной массе растворенного вещества и массе растворителя. 3. Вычисление массы растворяемого вещества и растворителя, необходимых для приготовления определенной массы раствора с известной массовой долей растворенного вещества.

Демонстрации. Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Способы разделения смесей, дистилляция воды.

Лабораторные опыты. 1. Знакомство с образцами веществ разных классов. 2. Разделение смесей.

Практическаяработа № 3.Анализ почвы и воды.

Практическаяработа № 4.Приготовление раствора сахара с заданной массовой долей растворенноговещества.

Предметные результаты обучения

Учащийся должен уметь:

использовать при характеристике веществ понятия: «степень окисления», «валентность», «оксиды», «основания», «щелочи», «качественная реакция», «индикатор», «кислоты», «кислородсодержащие кислоты», «бескислородные кислоты», «кислотная среда», «щелочная среда», «нейтральная среда», «шкала рН», «соли», «аморфные вещества», «кристаллические вещества», «кристаллическая решетка», «ионная кристаллическая решетка», «атомная кристаллическая решетка», «молекулярная кристаллическая решетка», «металлическая кристаллическая решетка», «смеси»;

классифицировать сложные неорганические вещества по составу на оксиды, основания, кислоты и соли; основания, кислоты и соли по растворимости в воде; кислоты по основности и содержанию кислорода;

определять принадлежность неорганических веществ к одному из изученных классов (оксиды, летучие водородные соединения, основания, кислоты, соли) по формуле;

описывать свойства отдельных представителей оксидов (на примере воды, углекислого газа, негашеной извести), летучих водородных соединений (на примере хлороводорода и аммиака), оснований (на примере гидроксидов натрия, калия и кальция), кислот (на примере серной кислоты) и солей (на примере хлорида натрия, карбоната кальция, фосфата кальция);

определять валентность и степень окисления элементов в веществах;

составлять формулы оксидов, оснований, кислот и солей по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;

составлять названия оксидов, оснований, кислот и солей; сравнивать валентность и степень окисления; оксиды, основания, кислоты и соли по составу;

использовать таблицу растворимости для определения растворимости веществ;

устанавливать генетическую связь между оксидом и гидро-ксидом и наоборот; причинно-следственные связи между строением атома, химической связью и типом кристаллической решетки химических соединений;

характеризовать атомные, молекулярные, ионные металлические кристаллические решетки; среду раствора с помощью шкалы рН;

приводить примеры веществ с разными типами кристаллической решетки;

проводить наблюдения за свойствами веществ и явлениями, происходящими с веществами;

соблюдать правила техники безопасности при проведении наблюдений и опытов;

исследовать среду раствора с помощью индикаторов; экспериментально различать кислоты и щелочи, пользуясь индикаторами;

использовать при решении расчетных задач понятия «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества»;

проводить расчеты с использованием понятий «массовая доля элемента в веществе», «массовая доля растворенного вещества», «объемная доля газообразного вещества».

Метапредметные результаты обучения

Учащийся должен уметь:

составлять на основе текста таблицы, в том числе с применением средств ИКТ;

под руководством учителя проводить опосредованное наблюдение

под руководством учителя оформлять отчет, включающий описание эксперимента, его результатов, выводов;

осуществлять индуктивное обобщение (от единичного достоверного к общему вероятностному), т. е. определять общие существенные признаки двух и более объектов и фиксировать их в форме понятия или суждения;

осуществлять дедуктивное обобщение (подведение единичного достоверного под общее достоверное), т. е. актуализировать понятие или суждение, и отождествлять с ним соответствующие существенные признаки одного или более объектов;

определять аспект классификации;

осуществлять классификацию;

знать и использовать различные формы представления классификации.


Тема 5. Изменения, происходящие с веществами (12ч)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, - химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения - электролиз воды. Реакции соединения - взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения - взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчётные задачи. 1. Вычисление по химическим уравнениям массы или количества вещества по известной массе или количеству вещества одного из вступающих в реакцию веществ или продуктов реакции. 2. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей. 3. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса раствора и массовая доля растворенного вещества.

Предметные результаты обучения:

Учащийся должен уметь:

классифицировать химические реакции по числу и составу исходных веществ и продуктов реакции; тепловому эффекту; направлению протекания реакции; участию катализатора;

использовать таблицу растворимости для определения возможности протекания реакций обмена; электрохимический ряд напряжений (активности) металлов для определения возможности протекания реакций между металлами и водными растворами кислот и солей;

наблюдать и описывать признаки и условия течения химических реакций, делать выводы на основании анализа наблюдений за экспериментом;

проводить расчеты по химическим уравнениям на нахождение количества, массы или объема продукта реакции по количеству, массе или объему исходного вещества; с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Метапредметные результаты обучения

Учащийся должен уметь:

составлять на основе текста схемы, в том числе с применением средств ИКТ;

самостоятельно оформлять отчет, включающий описание эксперимента, его результатов, выводов;

использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений химических реакций);

различать объем и содержание понятий;

различать родовое и видовое понятия;

осуществлять родовидовое определение понятий.

Демонстрации. Примеры физических явлений; а) плавление парафина; б) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II); г) растворение полученного гидроксида в кислотах;д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами.

Лабораторные опыты. 3. Сравнение скорости испарения воды и спирта по исчезновению их капель на фильтровальной бумаге. 4. Окисление меди в пламени спиртовки или горелки. 5. Помутнение известковой воды от выдыхаемого углекислого газа. 6. Получение углекислого газа взаимодействием соды и кислоты. 7. Замещение меди в растворе хлорида меди (II) железом.

Практическаяработа № 5.Признаки химических реакций.

Предметные результаты обучения:

Учащийся должен уметь:

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

выполнять простейшие приемы работы с лабораторным оборудованием: лабораторным штативом; спиртовкой;

наблюдать за свойствами веществ и явлениями, происходящими с веществами;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

делать выводы по результатам проведенного эксперимента;

готовить растворы с определенной массовой долей растворенного вещества;

приготовить раствор и рассчитать массовую долю растворенного в нем вещества.

Метапредметные результаты обучения

Учащийся должен уметь:

самостоятельно использовать опосредованное наблюдение.


Тема 6. Теория электролитической диссоциации и свойства классов неорганических соединений (22 ч)

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями - реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости дляхарактеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований. Разложение нерастворимых оснований при нагревании.
Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ - металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.Предметные результаты обучения:

Учащийся должен уметь:

использовать при характеристике превращений веществ понятия: «раствор», «электролитическая диссоциация», «электролиты», «неэлектролиты», «степень диссоциации», «сильные электролиты», «слабые электролиты», «катионы», «анионы», «кислоты», «основания», «соли», «ионные реакции», «несолеобразующие оксиды», «солеобразующие оксиды», «основные оксиды», «кислотные оксиды», «средние соли», «кислые соли», «основные соли», «генетический ряд», «окислительно-восстановительные реакции», «окислитель», «восстановитель», «окисление», «восстановление»;

описывать растворение как физико-химический процесс;

иллюстрировать примерами основные положения теории электролитической диссоциации; генетическую взаимосвязь между веществами (простое вещество — оксид — гидроксид — соль);

характеризовать общие химические свойства кислотных и основных оксидов, кислот, оснований и солей с позиций теории электролитической диссоциации; сущность электролитической диссоциации веществ с ковалентной полярной и ионной химической связью; сущность окислительно-восстановительных реакций;

приводить примеры реакций, подтверждающих химические свойства кислотных и основных оксидов, кислот, оснований и солей; существование взаимосвязи между основными классами неорганических веществ;

классифицировать химические реакции по «изменению степеней окисления элементов, образующих реагирующие вещества»;

составлять уравнения электролитической диссоциации кислот, оснований и солей; молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; уравнения окислительно-восстановительных реакций, используя метод электронного баланса; уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;

определять окислитель и восстановитель, окисление и восстановление в окислительно-восстановительных реакциях;

устанавливать причинно-следственные связи: класс вещества — химические свойства вещества;

наблюдать и описывать реакции между электролитами с помощью естественного (русского или родного) языка и языка химии;

проводить опыты, подтверждающие химические свойства основных классов неорганических веществ.

Метапредметные результаты обучения

Учащийся должен уметь:

делать пометки, выписки, цитирование текста;

составлять доклад;

составлять на основе текста графики, в том числе с применением средств ИКТ;

владеть таким видом изложения текста, как рассуждение;

использовать такой вид мысленного (идеального) моделирования, как знаковое моделирование (на примере уравнений реакций диссоциации, ионных уравнений реакций, полуреакций окисления-восстановления);

различать компоненты доказательства (тезис, аргументы и форму доказательства);

осуществлять прямое индуктивное доказательство.

Демонстрации. Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой, соляной кислотой, хлоридом меди (II). Горение магния.

Лабораторные опыты. 8. Реакции, характерные для растворов кислот (соляной или серной). 9. Реакции, характерные для растворов щелочей (гидроксидов натрия или калия). 10. Получение и свойства нерастворимого основания, например гидроксида меди (II). 11. Реакции, характерные для растворов солей (например, для хлорида меди (II)). 12. Реакции, характерные для основных оксидов (например, для оксида кальция). 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

Практическая работа № 6. Свойства кислот, оснований, оксидов и солей.

Практическая работа № 7. Решение экспериментальных задач.

Предметные результаты обучения

Учащийся должен уметь:

обращаться с лабораторным оборудованием и нагревательными приборами в соответствии с правилами техники безопасности;

выполнять простейшие приемы обращения с лабораторным оборудованием: лабораторным штативом, спиртовкой;

наблюдать за свойствами веществ и явлениями, происходящими с веществами;

описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;

делать выводы по результатам проведенного эксперимента.

Метапредметные результаты обучения

Учащийся должен уметь:

определять, исходя из учебной задачи, необходимость непосредственного или опосредованного наблюдения;

самостоятельно формировать программу эксперимента.

Планируемые предметные результаты освоения учебного предмета, курса

Личностные результаты:

осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;

постепенно выстраивать собственное целостное мировоззрение:осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы; готовить себя к осознанному выбору будущей профессии;

оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;

оценивать экологический риск взаимоотношений человека и природы.

формироватьэкологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды - гаранта жизни и благополучия людей на Земле.

Предметные результаты:

осознание роли веществ в природе и технике; объяснение круговорота веществ в природе и его роль;

рассмотрение химических процессов, приведение примеров химических процессов в природе;

формулированиеобщих признаков химических процессов и их различия;

использование химических знаний в быту для объяснения значения веществ в жизни и хозяйстве человека;

объяснение мира с точки зрения химии: перечисление отличительных свойств химических веществ; различение основных химических процессов; определение основных классов неорганических веществ, понимание смысла химических терминов;

овладение основами методами познания, характерными для естественных наук (наблюдение, сравнение, эксперимент, измерение), осознаниеих роли в познании природы; проведение химических опытов и экспериментов и осознанное объяснение их результатов;

умение оценивать поведение человека с точки зрения химической безопасности по отношению к человеку и природе, использование знаний химии при соблюдении правил использования бытовых химических препаратов; различение опасных и безопасных веществ.

Метапредметные результаты:

самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;

выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельносредства достижения цели;

составлять (индивидуально или в группе) план решения проблемы;

работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;

в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки.

анализировать, сравнивать, классифицировать и обобщать факты и явления, выявлять причины и следствия простых явлений;

осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

строить логические рассуждения, включающие установление причинно-следственных связей;

создавать схематические модели с выделением существенных характеристик объекта;

составлять тезисы, различные виды планов, преобразовывать информациюиз одного вида в другой;

уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;

самостоятельно организовывать учебное взаимодействие в группе

В результате изучения химии на базовом уровне Учащиеся получат возможность научиться понимать:

химическую символику: знаки химических элементов, формулы химических веществ, уравнения химических реакций;

важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;

основные законы химии: сохранения массы веществ, постоянства состава, периодический закон;

основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;

важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

Учащиеся получат возможность научится:

называть: знаки химических элементов, изученные вещества по «тривиальной» или международной номенклатуре;

определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;

характеризовать: элементы малых периодов по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;

объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;

выполнять химический эксперимент по распознаванию важнейших неорганических (кислород, водород, углекислый газ, аммиак, растворы кислот и щелочей, хлорид-, сульфат -, карбонат-ионы, ионы аммония) и органических веществ;

вычислять: массовую долю химического элемента по формуле соединения, массовую долю растворённого вещества в растворе, количество вещества, объём или массу реагентов или продуктов реакции.

проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

определения возможности протекания химических превращений в различных условиях и оценки их последствий;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

приготовления растворов заданной концентрации в быту и на производстве;

критической оценки достоверности химической информации, поступающей из разных источников.

В теме 1: Атомы химических элементов.

В результате изучения темына базовом уровне ученик должен

знать/понимать:

-важнейшие химические понятия: протоны, нейтроны, электроны, ионы, изотопы,

химическая связь, электроотрицатльность, кристаллические решетки, аморфныевещества

- особенности строения атома, состав ядра, определение понятий: протоны, нейтроны,электроны, изотопы.

- сущность и значение периодического закона химических элементов Д.И. Менделеева

- положение щелочных металлов, галогенов в ПСМ, их свойства.

- особенности строения ПС

уметь:

- объяснять физический смысл порядкового номера химического элемента, номера

группы и периода;

- составлять схемы строения атомов первых 20 элементовП.С.Д.И.Менделеева:

- объяснять сходство и различие в строении атомов химических элементов;

-характеризовать щелочные металлы как химические элементы, обосновывать их свойства кактипичных металлов;

- характеризовать галогеныкак химические элементы, обосновывать их свойства как типичных неметаллов;

- объяснять закономерности изменения свойств элементов в пределах малых периодов и главных подгрупп;

- определять тип химической связи в соединениях.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

В теме 2 : Простые вещества.

В результате изучения темына базовом уровне ученик должен

знать/понимать:

-важнейшие химические понятия: аллотропия, моль, молярная масса, молярный объем, постоянная Авогадро.

- сущность и значение Закона Авогадро;

- относительность понятий «металлические» и «неметаллические» свойства.

уметь:

- характеризовать химические элементы металлы и неметаллы по таблице Д.И. Менделеева.;

- объяснять связь между составом, строением и свойствами веществ.

– вычислять количество вещества, массу, объем по известному количеству вещества, массе или объему;

-использовать постоянную Авогадро;

- вычислять относительную плотность газов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

В теме 3: Соединения химических элементов

В результате изучения темына базовом уровне ученик должен

знать/понимать:

- важнейшие химические понятия: химическая реакция, тепловой эффект реакции, типыхимических реакций,химические уравнения, реагенты, продукты реакции, коэффициент, химическую символику, уравнения химических реакций. Ряд активности металлов. Реакции нейтрализации. Сущность химических реакций обмена. Гидролиз.

Скорость химической реакции. Катализатор. Ферменты.

- основные законы химии: закон сохранения массывеществ

-классификацию химических реакций

-признаки протекания химических реакций

- сущность понятия «тепловой эффект химической реакции», классификацию химическихреакций по поглощению или выделению энергии

уметь:

- называть признаки и условия осуществления химических реакций;

- объяснять отличие химических явлений от физических;

- определять типы химическихреакций по числу и составу исходных и полученныхвеществ;

- составлять уравнения химических реакций различных типов (расставлять коэффициенты в уравнениях х.р.на основе закона сохранения массы веществ.);

- прогнозировать возможность протекания реакций между металлом и раствором кислот.

-применять закон сохранения массы веществ для решениизадач по уравнениям химических реакций;

- следовать правилам пользования химической посудой и лабораторным оборудованием

-определять реагенты и продукты реакции;

- вычислять количество (массу)по количеству вещества (массе) одного из вступивших илиполученных веществ;

- характеризовать химические свойства воды;

- составлять уравнения реакций по цепочке переходов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

Простейшие операции с веществом. Химический практикум

Практическая работа № 1. Правила по технике безопасности в химическом кабинете. Изучение лабораторного оборудования и приемы обращения с ним.

Практическая работа № 2. Наблюдения за изменениями, происходящими с горящей свечой.

Практическая работа № 3. Анализ почвы и воды.

Практическая работа № 4. Признаки протекания химических реакций

Практическая работа № 5. Приготовление раствора сахара и определение массовой доли сахара в растворе.

знать/понимать:

- правила техники безопасности работы в кабинете химии;

- приемы обращения с химической посудойи лабораторнымоборудованием

- чистые вещества и смеси, однородные и неоднородные смеси

- способы разделения различных видов смесей

уметь:

- вычислять массу воды и веществ в растворах с определенной массовой долей растворенного вещества

-следовать правилам пользования химической посудойи лабораторнымоборудованием

- проводить эксперимент по разделению неоднородных смесей;

- распознавать опытным путем растворы кислот и щелочей.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

В теме 4: Изменения происходящие с веществами

В результате изучения темына базовом уровне ученик должен

знать/понимать:

- важнейшие химические понятия: химическая реакция, тепловой эффект реакции, типыхимических реакций,химические уравнения, реагенты, продукты реакции, коэффициент, химическую символику, уравнения химических реакций. Ряд активности металлов. Реакции нейтрализации. Сущность химических реакций обмена. Гидролиз.

Скорость химической реакции. Катализатор. Ферменты.

- основные законы химии: закон сохранения массывеществ

-классификацию химических реакций

-признаки протекания химических реакций

- сущность понятия «тепловой эффект химической реакции», классификацию химическихреакций по поглощению или выделению энергии

уметь:

- называть признаки и условия осуществления химических реакций;

- объяснять отличие химических явлений от физических;

- определять типы химическихреакций по числу и составу исходных и полученныхвеществ;

- составлять уравнения химических реакций различных типов (расставлять коэффициенты в уравнениях х.р.на основе закона сохранения массы веществ.); - прогнозировать возможность протекания реакций между металлом и раствором кислот.

-применять закон сохранения массы веществ для решениизадач по уравнениям химических реакций;

- следовать правилам пользования химической посудой и лабораторным оборудованием

-определять реагенты и продукты реакции;

- вычислять количество (массу)по количеству вещества (массе) одного из вступивших илиполученных веществ; - характеризовать химические свойства воды;

- составлять уравнения реакций по цепочке переходов.

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

В теме 5: Растворение. Растворы. Свойства растворов электролитов.

знать/понимать:

- важнейшие химические понятия: растворимость, растворы, гидраты и кристаллогидраты, ион,электролиты,неэлектролиты,электролитическая диссоциация, окислитель, восстановитель, окисление, восстановление, генетическая связь

- классификацию веществ по растворимости;

- основные положения ТЭД;

- механизм электролитической диссоциации;

- сильные и слабые электролиты;

- реакции ионного обмена;

- условия протекания реакций ионного обмена до конца;

- окислительно-восстановительные реакции.

уметь:

- составлять уравнения диссоциации кислот, щелочей, солей;

-составлять уравнения реакций ионного обмена в молекулярном и ионном виде;

-определять возможность протекания реакций ионного обмена;

- делать классификацию кислот, оснований, солей, оксидов;

- характеризовать химические свойства кислот, оснований, солей, оксидов в свете ТЭД;

- объяснять сущность реакций ионного обмена;

- распознавать опытным путем растворы кислот и щелочей;

- называть соединения изученных классов;

- определять степень окисления элемента в соединении;

- составлять уравнения окислительно-восстановительных реакций методом электронного баланса;

- составлять генетические ряды металлов и неметаллов;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

объяснения химических явлений, происходящих в природе, быту и на производстве;

экологически грамотного поведения в окружающей среде;

оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;

безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;

критической оценки достоверности химической информации, поступающей из разных источников.

Содержание учебного предмета

9 класс

Повторение и обобщение сведений по курсу 8-го класса

Бинарные соединения. Оксиды солеобразующие и несолеобразующие. Гидроксиды: основания, амфотерные, кислоты. Средние, кислые, основные соли.

Обобщение сведений о химических реакциях. Классификация химических реакций по различным основаниям: составу и числу реагирующих и образующихся веществ, тепловому эффекту, направлению, изменению степеней окисления элементов, образующих реагирующие вещества, фазе, использованию катализатора.

Понятие о скорости химической реакции. Факторы, влияющие на скорость химических реакций: природа реагирующих веществ, их концентрация, температура, площадь соприкосновения, наличие катализатора. Катализ.

Демонстрации.

Ознакомление с коллекциями металлов и неметаллов.

Ознакомление с коллекциями оксидов, кислот и солей.

Зависимость скорости химической реакции от природы реагирующих веществ.

Зависимость скорости химической реакции от концентрации реагирующих веществ.

Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ («кипящий слой»).

Зависимость скорости химической реакции от температуры реагирующих веществ.

Лабораторные опыты.

1. Взаимодействие аммиака и хлороводорода.

2. Реакция нейтрализации.

3. Наблюдение теплового эффекта реакции нейтрализации.

4. Взаимодействие серной кислоты с оксидом меди (II).

5. Разложение пероксида водорода с помощью каталазы картофеля

6. Зависимость скорости химической реакции от природы реагирующих веществ на примере взаимодействия растворов тиосульфата натрия и хлорида бария, тиосульфата натрия и соляной кислоты.

7. Зависимость скорости химической реакции от природы металлов при их взаимодействии с соляной кислотой.

8. Зависимость скорости химической реакции от природы кислот при взаимодействии их с железом.

9. Зависимость скорости химической реакции от температуры.

10.Зависимость скорости химической реакции от концентрации.

11. Зависимость скорости химической реакции от площади соприкосновения реагирующих веществ.

12. Зависимость скорости химической реакции от катализатора.

Химические реакции в растворах электролитов

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциаций электролитов с различным характером связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Классификация ионов и их свойства. Кислоты, основания и соли как электролиты. Их классификация и диссоциация.

Общие химические свойства кислот: изменение окраски индикаторов, взаимодействие с металлами, оксидами и гидроксидами металлов и солями. Молекулярные и ионные (полные и сокращённые) уравнения реакций. Химический смысл сокращённых уравнений. Условия протекания реакций между электролитами до конца. Ряд активности металлов.

Общие химические свойства щелочей: взаимодействие с кислотами, оксидами неметаллов, солями. Общие химические свойства нерастворимых оснований: взаимодействие с кислотами, разложение при нагревании.

Общие химические свойства средних солей: взаимодействие с кислотами, щелочами, солями и металлами. Взаимодействие кислых солей со щелочами.

Гидролиз, как обменное взаимодействие солей с водой. Гидролиз соли сильного основания и слабой кислоты. Гидролиз соли слабого основания и сильной кислоты. Шкала pH.

Свойства кислот, оснований, оксидов и солей всвете теории электролитической диссоциации и окислительно-восстановительныхреакций.

Демонстрации.

Испытание веществ и их растворов на электропроводность

Зависимость электропроводности уксусной кислоты от концентрации.

Движение окрашенных ионов в электрическом поле

Определение характера среды в растворах солей.

Лабораторные опыты.

13. Диссоциация слабых электролитов на примере уксусной кислоты.

14. Изменение окраски индикаторов в кислотной среде.

15.Реакция нейтрализации раствора щёлочи различными кислотами.

16. Получение гидроксида меди(II) и его взаимодействие с различными кислотами.

17. Взаимодействие сильных кислот с оксидом меди(II).

18-20. Взаимодействие кислот с металлами.

21. Качественная реакция на карбонат-ион.

22. Получение студня кремниевой кислоты.

23. Качественная реакция на хлорид- или сульфат-ионы

24. Изменение окраски индикаторов в щелочной среде.

25. Взаимодействие щелочей с углекислым газом.

26. Качественная реакция на катион аммония.

27. Получение гидроксида меди(II) и его разложение.

28. Взаимодействие карбонатов с кислотами.

29. Получение гидроксида железа(III).

30. Взаимодействие железас раствором сульфата меди(II)

Практические работы

1. Свойства кислот, оснований, оксидов и солей всвете теории электролитической диссоциации и окислительно-восстановительныхреакций

Неметаллы и их соединения

Строение атомов неметаллов и их положение в Периодической системе. Ряд электроотрицательности. Кристаллические решётки неметаллов ― простых веществ. Аллотропия и её причины. Физические свойства неметаллов. Общие химические свойства неметаллов: окислительные и восстановительные.

Галогены, строение их атомов и молекул. Физические и химические свойства галогенов. Закономерности изменения свойств галогенов в зависимости от их положения в Периодической системе. Нахождение галогенов в природе и их получение. Значение и применение галогенов.

Галогеноводороды и соответствующие им кислоты: плавиковая, соляная, бромоводородная, иодоводородная. Галогениды. Качественные реакции на галогенид-ионы. Применение соединений галогенов и их биологическая роль.

Общая характеристика элементов VI А – группы. Сера в природеи её получение. Аллотропные модификации серы и их свойства. Химические свойства серы и её применение.

Сероводород: строение молекулы, физические и химические, получение и значение. Сероводородная кислота. Сульфиды и их значение. Люминофоры.

Оксид серы(IV), сернистая кислота, сульфиты. Качественная реакция на сульфит-ион.

Оксид серы(VI), серная кислота, сульфаты. Кристаллогидраты. Качественная реакция на сульфат-ион.

Серная кислота – сильный электролит. Свойства разбавленной серной кислоты, как типичной кислоты: взаимодействие с металлами, основными и амфотерными оксидами, основаниями и амфотерными гидроксидами, солями. Качественная реакция на сульфат-ион.

Общая характеристика элементов VA группы. Азот, строение атома и молекулы. Физические и химические свойства и применение азота. Азот в природе и его биологическая роль.

Аммиак, строение молекулы и физические свойства. Аммиачная вода, нашатырный спирт, гидрат аммиака. Донорно-акцепторный механизм образования катиона аммония. Восстановительные свойства аммиака. Соли аммония и их применение. Качественная реакция на катион аммония.

Оксиды азота: несолеобразующие и кислотные. Азотистая кислота и нитриты. Азотная кислота, её получение и свойства. Нитраты.

Фосфор, строение атома и аллотропия. Фосфиды. Фосфин. Оксид фосфора(V) и ортофосфорная кислота. Фосфаты. Фосфорные удобрения. Инсектициды.

Общая характеристика элементов IV А- группы: особенности строения атомов, простых веществ и соединений в зависимости от положения элементов в Периодической системе.Углерод. Аллотропные модификации: алмаз, графит. Аморфный углерод и его сорта: сажа, активированный уголь. Адсорбция. Химические свойства углерода. Коксохимическое производство и его продукция. Карбиды.

Оксид углерода(II): строение молекулы, получениеи его свойства. Оксид углерода(IV): строение молекулы, получениеи его свойства. Угольная кислота. Соли угольной кислоты: карбонаты и гидрокарбонаты. Техническая и пищевая сода.

Неорганические и органические вещества. Углеводороды. Химическое строение органических веществ, как порядок соединения атомов в молекуле по валентности.

Метан, этан, как предельные углеводороды. Этилен и ацетилен, как непредельные (ненасыщенные) углеводороды. Горение углеводородов. Качественные реакции на непредельные соединения.

Этиловый спирт, его получение, применение и физиологическое действие. Трехатомный спирт глицерин. Качественная реакция на многоатомные спирты. Уксусная – представитель класса карбоновых кислот.

Кремний, строение его атома и свойства. Кремний в природе. Силициды и силан. Оксид кремния(IV). Кремниевая кислота и её соли.

Производство стекла и цемента. Продукция силикатной промышленности: оптическое волокно, керамика, фарфор, фаянс. Оптическое волокно.

Неметаллы в природе. Фракционная перегонка жидкого воздуха, как способ получения кислорода, азота, аргона. Получение фосфора, кремния, хлора, иода. Электролиз растворов.

Получение серной кислоты: сырьё, химизм, технологическая схема, метод кипящего слоя, принципы теплообмена, противотока и циркуляции. Олеум. Производство аммиака: сырьё, химизм, технологическая схема.

Демонстрации

Коллекция неметаллов.

Модели кристаллических решёток неметаллов: атомные и молекулярные.

Озонатор и принципы его работы.

Горение неметаллов – простых веществ: серы, фосфора, древесного угля.

Образцы галогенов — простых веществ.

Взаимодействие галогенов с металлами.

Вытеснение хлора бромом или иода из растворов их солей

Коллекция природных соединений хлора.

Взаимодействие серы с металлами.

Горение серы в кислороде

Коллекция сульфидных руд.

Качественная реакция на сульфид-ион

Обесцвечивание окрашенных тканей и цветов сернистым газом.

Взаимодействие концентрированной серной кислоты с медью.

Обугливание органических веществ концентрированной серной кислотой.

Диаграмма «Состав воздуха»

Видеофрагменты и слайды «Птичьи базары»

Получение, собирание и распознавание аммиака

Разложение бихромата аммония

Взаимодействие концентрированной азотной кислоты с медью

Горение чёрного пороха

Разложение нитрата калия и горение древесного уголька в нём

Образцы природных соединений фосфора.

Горение фосфора на воздухе и в кислороде.

Получение белого фосфора и испытание его свойств

Коллекция «Образцы природных соединений углерода»

Портрет Н. Д. Зелинского. Поглощение активированным углём растворённых веществ или газов.

Устройство противогаза

Модели молекул метана, этана, этилена и ацетилена.

Взаимодействие этилен с бромной водой и раствором перманганата калия.

Общие химические свойства кислот на примере уксусной кислоты

Качественная реакция на многоатомные спирты

Коллекция «Образцы природных соединений кремния»

Коллекция стекла, керамики, цемента и изделий из них

Коллекция продукции силикатной промышленности

Видеофрагменты и слайды «Производство стекла и цемента»

Коллекция «Природные соединения неметаллов»

Видеофрагменты и слайды «Фракционная перегонка жидкого воздуха»

Видеофрагменты и слайды «Получение водорода, кислорода и галогенов электролитическим способом»

Модели аппаратов для производства серной кислоты.

Модель кипящего слоя.

Модель колонны синтеза аммиака.

Видеофрагменты и слайды «Производство серной кислоты»

Видеофрагменты и слайды «Производство аммиака»

Коллекция «Сырьё для получения серной кислоты»

Лабораторные опыты

31. Распознавание галогенид-ионов

32. Качественные реакции на сульфат-ионы

33. Качественная реакция на катион аммония

34. Химические свойства азотной кислоты, как электролита

35. Качественные реакции на фосфат-ион

36. Получение и свойства угольной кислоты

37. Качественная реакция на карбонат-ион

38. Пропускание углекислого газа через раствор силиката натрия

Практические работы

2.Изучение свойств соляной кислоты

3. Изучение свойств серной кислоты

4. Получение аммиака и изучение его свойств

5. Получение углекислого газа и изучение его свойств

Металлы и их соединения (17ч)

Положение металлов в Периодической системе химических элементов Д. И. Менделеева, строение их атомов и кристаллов. Металлическая связь и металлическая кристаллическая решётка. Физические свойства металлов: электро- и теплопроводность, отражающая способность, пластичность. Сплавы чёрные и цветные.

Металлы как восстановители. Электрохимический ряд напряжений. Взаимодействие металлов с неметаллами, оксидами, кислотами, солями. Алюминотермия.

Оксиды и гидроксиды щелочных металлов, их получение, свойства, применение. Важнейшие соли щелочных металлов, их значение в живой и неживой природе и в жизни человека.

Оксиды и гидроксиды щелочноземельных металлов, их получение, свойства и применение. Важнейшие соли щёлочно-земельных металлов, их значение в природе и жизни человека. Карбонаты и гидрокарбонаты кальция.

Жёсткость воды: временная и постоянная. Способы устранения временной жёсткости.Способы устранения постоянной жёсткости.Иониты.

Соединения алюминия в природе. Химические свойства алюминия. Особенности оксида и гидроксида алюминия как амфотерных соединений. Важнейшие соли алюминия (хлорид, сульфат).

Особенности строения атома железа. Железо в природе. Важнейшие руды железа. Получение чугуна и стали. Оксиды и гидроксиды железа(II) и (III). Соли железа(II) и (III). Обнаружение ионов катионов железа в растворе. Значение соединений железа.

Коррозия химическая и электрохимическая. Защита металлов от коррозии.

Металлы в природе: в свободном виде и в виде соединений. Понятие о металлургии.Чёрная и цветная металлургия.Пирометаллургия, гидрометаллургия, электрометаллургия. Доменный процесс. Переработка чугуна в сталь. Электролиз расплавов.

Демонстрации

Взаимодействие натрия, лития и кальция с водой.

Горение натрия, магния и железа в кислороде.

Вспышка термитной смеси.

Взаимодействие смеси порошков серы и железа, цинка и серы.

Взаимодействие алюминия с кислотами, щелочами и водой.

Взаимодействие железа и меди с хлором.

Взаимодействие меди с концентрированной серной кислотой и азотной кислотой (разбавленной и концентрированной).

Окраска пламени соединениями щелочных металлов

Окраска пламени соединениями щёлочноземельных металлов

Гашение извести водой.

Получение жёсткой воды взаимодействием углекислого с известковой водой.

Устранение временной жёсткости кипячением и добавкой соды.

Устранение постоянной жёсткости добавкой соды.

Иониты и принцип их действия (видеофрагмент).

Коллекция природных соединений алюминия.

Видеофрагменты и слайды «Оксид алюминия и его модификации».

Получение амфотерного гидроксида алюминия и исследование его свойств

Коллекция «Химические источники тока»

Результаты длительного эксперимента по изучению коррозии стальных изделий в зависимости от условий процессов

Восстановление меди из оксида меди(II) водородом

Видеофрагменты и слайды «Производство чугуна и стали»

Видеофрагменты и слайды «Изделия из чугуна и стали»

Видеофрагменты и слайды «Производство алюминия»

Лабораторные опыты

39. Взаимодействие железа с раствором сульфата меди(II)

40. Получение известковой воды и опыты с ней

41. Получение гидроксидов железа(II) и (III)

42.Качественные реакции на катионы железа

Практические работы

6. Получение жесткой воды и способы её устранения

7. Решение экспериментальных задач по теме «Металлы»

Химия и окружающая среда(2ч)

Строение Земли: ядро, мантия, земная кора, их химический состав. Литосфера и её химический состав. Минералы. Руды. Осадочные породы. Полезные ископаемые. Химический состав гидросферы. Химический состав атмосферы.

Источники химического загрязнения окружающей среды. Глобальные экологические проблемы человечества: парниковый эффект, кислотные дожди, озоновые дыры. Международное сотрудничество в области охраны окружающей среды от химического загрязнения. «Зелёная химия».

Маркировка упаковочных материалов, электроники и бытовой техники,продуктов питания, этикеток по уходу за одеждой.

Демонстрации

Видеофрагменты и слайды «Строение Земли и её химический состав»

Коллекция минералов и горных пород

Коллекция «Руды металлов»

Видеофрагменты и слайды «Глобальные экологические проблемы человечества»

Видеофрагменты и слайды о степени экологической чистоты товара

Лабораторные опыты

43. Изучение гранита

44. Изучение маркировок различных видов промышленных и продовольственных товаров

Обобщение знаний по химии за курс основной школы. Подготовка к Основному государственному экзамену (7ч)

Строение атома в соответствии с положением химического элемента в Периодической системе. Строение вещества: химическая связь и кристаллические решётки. Зависимость свойств образованных элементами простых веществ (металлов, неметаллов, благородных газов) от положения элементов в Периодической системе. Типология неорганических веществ, деление их на классы и группы. Представители.

Признаки и условия протекания химических реакций. Типология химических реакций по различным основаниям. Реакции ионного обмена. Окислительно-восстановительные реакции.

Химические свойства простых веществ. Характерные химические свойства солеобразующих оксидов, гидроксидов (оснований, кислот и амфотерных гидроксидов, солей.

Планируемые предметныерезультаты освоения учебного предмета, курса

Выпускник научится

знать (понимать):

—химическую символику: знаки химических элементов, формулы химических веществ, уравнения химических реакций;

— важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, катион, анион, химическая связь, электроотрицательность, валентность, степень окисления,

моль, молярная масса, молярный объём, растворы, электролиты и неэлектролиты, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, основные типы реакций в неорганической химии;

— формулировки основных законов и теорий химии: атомно-молекулярного учения; законов сохранения массы веществ, постоянства состава веществ, Авогадро; Периодического закона Д.И. Менделеева; теории строения атома и учения о строении вещества; теории электролитической диссоциации и учения о химической реакции;

называть:

— химические элементы;

— соединения изученных классов неорганических веществ;

— органические вещества по их формуле: метан, этан, этилен, ацетилен, метанол, этанол, глицерин, уксусная кислота, глюкоза, сахароза;

объяснять:

— физический смысл атомного (порядкового) номера химического элемента, номера группы и периода в Периодической системе Д. И. Менделеева, к которым элемент принадлежит;

— закономерности изменения строения атомов, свойств элементов в пределах малых периодов и А-групп, а также свойств образуемых ими высших оксидов и гидроксидов;

— сущность процесса электролитической диссоциации и реакций ионного обмена;

характеризовать:

— химические элементы (от водорода до кальция) на основе их положения в Периодической системе химических элементов Д. И. Менделеева и особенностей строения их атомов;

— взаимосвязь между составом, строением и свойствами неорганических веществ;

— химические свойства основных классов неорганических веществ (простых веществ — металлов и неметаллов, соединений — оксидов, кислот, оснований, амфотерных оксидов и гидроксидов, солей);

определять:

— состав веществ по их формулам;

— валентность и степени окисления элементов в соединении;

— виды химической связи в соединениях;

— типы кристаллических решёток твёрдых веществ;

— принадлежность веществ к определённому классу соединений;

— типы химических реакций;

— возможность протекания реакций ионного обмена;

составлять:

— схемы строения атомов первых 20 элементов Периодической системы Д. И. Менделеева;

— формулы неорганических соединений изученных классов;

— уравнения химических реакций, в том числе и окислительно-восстановительных, с помощью метода электронного баланса;

безопасно обращаться:

с химической посудой и лабораторным оборудованием;

проводить химический эксперимент:

— подтверждающий химический состав неорганических соединений;

— подтверждающий химические свойства изученных классов неорганических веществ;

— по получению, собиранию и распознаванию газообразных веществ (кислорода, водорода, углекислого газа, аммиака);

— по определению хлорид-, сульфат-, карбонат-ионов и иона аммония с помощью качественных реакций;

вычислять:

— массовую долю химического элемента по формуле соединения;

— массовую долю вещества в растворе;

— массу основного вещества по известной массовой доли примесей;

— объёмную долю компонента газовой смеси;

— количество вещества, объём или массу вещества по количеству вещества, объёму или массе реагентов, или продуктов реакции;

использовать приобретённые знания и умения в практической деятельности и повседневной жизни:

— для безопасного обращения с веществами и материалами в повседневной жизни и грамотного оказания первой помощи при ожогах кислотами и щелочами;

— для объяснения отдельных фактов и природных явлений;

— для критической оценки информации о веществах, используемых в быту.

Выпускник получит возможность научиться:

характеризовать основные методы познания химических объектов: наблюдение, измерение, эксперимент, моделирование.

различать химические объекты (в статике):

— химические элементы и простые вещества;

— металлы и неметаллы и характеризовать относительность принадлежности таких объектов к той или иной группе;

— органические и неорганические соединения;

— гидроксиды (кислородсодержащие кислоты, основания, амфотерные гидроксиды);

— оксиды несолеобразующие и солеобразующие (кислотные, основные, амфотерные);

— валентность и степень окисления;

— систематические и тривиальные термины химической номенклатуры;

— знаковую систему в химии (знаки и формулы, индексы и коэффициенты, структурные и молекулярные формулы, молекулярные и ионные уравнения реакций, полные и сокращенные ионные уравнения реакций, термомохимические уравнения, обозначениястепени окисления и заряда иона в формуле химического соединения);

различать химические объекты (в динамике):

— физические и химические стороны процессов растворения и диссоциации;

— окислительно-восстановительные реакции и реакции обмена;

— схемы и уравнения химических реакций;

соотносить:

— экзотермические реакции и реакции горения;

— каталитические и ферментативные реакции;

— металл, основный оксид, основание, соль;

— неметалл, кислотный оксид, кислота, соль;

— строение атома, вид химической связи, тип кристаллической решётки и физические свойства вещества;

— нахождение элементов в природе и промышленные способы их получения;

— необходимость химического производства и требований к охране окружающей среды;

— необходимость применения современных веществ и материалов и требования к здоровьесбережению;

выдвигать и экспериментально проверять гипотезы о химических свойствах веществ на основе их состава и строения и принадлежности к определённому классу (группе) веществ;

прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов,

входящих в его состав, а также продуктов соответствующих окислительно-восстановительных реакций;

составлять уравнения реакций с участием типичных окислителей и восстановителей на основе электронного баланса;

определять возможность протекания химических реакций на основе электрохимического ряда напряжений металлов, ряда электроотрицательности неметаллов, таблицы растворимости и учёта условий их проведения;

проводить расчёты по химическим формулам и уравнениям:

— для вывода формулы соединения по массовым долям элементов;

— по приготовлению раствора с использованием кристаллогидратов;

— по нахождению доли выхода продукта реакции по отношению к теоретически возможному;

— с использованием правила Гей-Люссака об объёмных отношениях газов;

— с использованием понятий «кмоль», «ммоль», «число Авогадро»;

— по термохимическим уравнениям реакции;

проводить химический эксперимент с неукоснительным соблюдением правил техники безопасности:

— по установлению качественного и количественного состава соединения;

— при выполнении исследовательского проекта;

— в домашних условиях;

использовать приобретённые ключевые компетенции для выполнения проектов и учебно-исследовательских задач по изучению свойств, способов получения и распознания веществ;

определять источники химической информации, представлять список информационных ресурсов, в том числе и на иностранном языке, готовить информационный продукт и презентовать его;

объективно оценивать информацию о веществах и химических процессах, критически относится к псевдонаучной информации, недобросовестной рекламе в средствах массовой информации;

создавать модели и схемы для решения учебных и познавательных задач.

21:21
26
ADM
RSS
Нет комментариев. Ваш будет первым!
Загрузка...